Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(3-Fluoro-4-nitrophenyl)morpholin-3one

Chang-Jiang Huang,^a* Jiang Wu,^b Zhi-Qiang Cai^a and Jing Yuan^a

^aTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and ^bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: czq0601@gmail.com

Received 16 May 2011; accepted 24 May 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 16.7.

In the title compound, $C_{10}H_9FN_2O_4$, the dihedral angle between the benzene ring and the nitro group plane is 11.29 (3)°. The morpholinone ring adopts a twist-chair conformation. In the crystal, molecules are linked by intermolecular $C-H \cdots O$ hydrogen bonds into a chain along the *a*axis direction.

Related literature

The title compound is an intermediate in the preparation of derivatives of the factor Xa inhibitor rivaroxaban (systematic name (S)-5-chloro-N-{[2-oxo-3-[4-(3-oxomorpholin-4-yl)-phenyl]oxazolidin-5-yl]methyl}thiophene-2-carboxamide). For the bioactivity and applications of rivaroxaban, see: Pinto *et al.* (2010); Haas (2008); Squizzato *et al.* (2009); Samama & Gerotziafas (2010); Van Huis *et al.* (2009). For the synthesis of other derivatives with morpholone, see: Van Huis *et al.* (2009); Zbinden *et al.* (2009).

Experimental

Crystal data $C_{10}H_9FN_2O_4$ $M_r = 240.19$

Triclinic, $P\overline{1}$ a = 6.6408 (7) Å

b = 7.3788 (10) Å
c = 10.8546 (14) Å
$\alpha = 73.30 \ (3)^{\circ}$
$\beta = 75.39 \ (3)^{\circ}$
$\gamma = 74.30 \ (3)^{\circ}$
$V = 481.60 (14) \text{ Å}^3$

Data collection

Rigaku Saturn CCD area-detector	6470 measured reflections
diffractometer	2569 independent reflections
Absorption correction: ψ scan	1734 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.041$
2009)	
$T_{\min} = 0.970, \ T_{\max} = 0.986$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	154 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
2569 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O2^{i}$ $C2-H2B\cdots O3^{ii}$ $C1-H1B\cdots O4^{iii}$	0.95	2.39	3.2635 (16)	153
	0.99	2.50	3.3244 (19)	140
	0.99	2.57	3.515 (2)	161

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z + 1; (iii) -x + 2, -y + 1, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2009).

The authors thank the State Key Laboratory of Elementoorganic Chemistry, Nankai University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2328).

References

- Haas, S. (2008). J. Thromb. Thrombolysis, 25, 52-60.
- Pinto, D. J. P., Smallheer, J. M., Cheney, D. L., Knabb, R. M. & Wexler, R. R. (2010). J. Med. Chem. 53, 6243–6274.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Samama, M. M. & Gerotziafas, G. T. (2010). J. Thromb. Thrombolysis, 29, 92– 104.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Squizzato, A., Dentali, F., Steidl, L. & Ageno, W. (2009). Int. Emerg. Med. 4, 479–484.
- Van Huis, C. A., et al. (2009). Bioorg. Med. Chem. 17, 2501-2511.
- Zbinden, K. G., et al. (2009). Eur. J. Med. Chem. 44, 2787-2795.

Mo $K\alpha$ radiation

 $0.22 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.14 \text{ mm}^{-1}$

T = 113 K

Z = 2

supplementary materials

Acta Cryst. (2011). E67, o1549 [doi:10.1107/S1600536811019738]

4-(3-Fluoro-4-nitrophenyl)morpholin-3-one

C.-J. Huang, J. Wu, Z.-Q. Cai and J. Yuan

Comment

Rivaroxaban is an oral, direct factor Xa inhibitor for the prevention and treatment of arterial and venous thrombosis (Pinto *et al.*, 2010; Haas, 2008; Squizzato *et al.*, 2009).

The title compound (Fig. 1) is important intermediate in the preparation of derivatives of Rivaroxaban. Some derivatives of Rivaroxaban have been reported for having high affinity for human FXa (Squizzato *et al.*, 2009; Samama *et al.*, 2010; Van Huis *et al.*, 2009). Herein, the synthesis and the crystal structure of the title compound are reported.

In the title compound, $C_{10}H_9F_1N_2O_4$, the dihedral angle between benzene ring and the plane of nitro group is 11.29 (3)°. The morpholone ring adopts a twist-chair conformation. In the crystal packing molecules are linked by intermolecular C—H…O hydrogen bonds into a chain (Table 1).

Experimental

Potassium carbonate (6.73 g, 0.0488 mol) was added to a suspension of 2-(2-chloroethoxy)-*N*-(3-fluoro-4-nitrophenyl)acetamide (9.00 g, 0.0325 mol) in acetonitrile (200 mL).The reaction mixture was stirred at 385 K for 5 h. The mixture was evaporated in vacuo. Water was added.The reaction mixture was filtered, washed with water, and dried to obtain yellow solid (7.19 g).Colourless single crystals suitable for X-ray diffraction were obtained by recrystallisation from ethanol and ethyl acetate.

Refinement

All H atoms were geometrically positioned (C—H 0.95–0.99 Å) and treated as riding, with $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. The structure of $C_{10}H_9F_1N_2O_4$ with all non-H atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.

4-(3-Fluoro-4-nitrophenyl)morpholin-3-one

Crystal	data

C ₁₀ H ₉ FN ₂ O ₄	Z = 2
$M_r = 240.19$	F(000) = 248

Triclinic, *P*T Hall symbol: -P 1 a = 6.6408 (7) Å b = 7.3788 (10) Å c = 10.8546 (14) Å a = 73.30 (3)° $\beta = 75.39$ (3)° $\gamma = 74.30$ (3)° V = 481.60 (14) Å³

Data collection

Rigaku Saturn CCD area-detector diffractometer	2569 independent reflections
Radiation source: rotating anode	1734 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.041$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω and ϕ scans	$h = -9 \rightarrow 9$
Absorption correction: ψ scan (<i>CrystalClear</i> ; Rigaku/MSC, 2009)	$k = -10 \rightarrow 9$
$T_{\min} = 0.970, \ T_{\max} = 0.986$	$l = -14 \rightarrow 14$
6470 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.104$	H-atom parameters constrained
<i>S</i> = 0.97	$w = 1/[\sigma^2(F_0^2) + (0.0502P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
2569 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
154 parameters	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

 $D_{\rm x} = 1.656 \ {\rm Mg \ m}^{-3}$

 $\theta = 2.0-31.1^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$

Prism, colourless $0.22 \times 0.20 \times 0.10 \text{ mm}$

T = 113 K

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1909 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.38071 (13)	0.73231 (13)	-0.24062 (8)	0.0292 (2)
01	0.23003 (15)	0.94560 (12)	0.40672 (8)	0.0192 (2)
O2	0.04787 (15)	0.82852 (15)	0.16307 (9)	0.0262 (2)
O3	0.74637 (16)	0.59970 (13)	-0.37865 (9)	0.0241 (2)
O4	1.03428 (15)	0.62270 (13)	-0.32888 (9)	0.0234 (2)
N1	0.39251 (16)	0.79057 (14)	0.18692 (10)	0.0139 (2)
N2	0.84043 (18)	0.63168 (15)	-0.30564 (10)	0.0165 (2)
C1	0.5325 (2)	0.77071 (18)	0.27977 (12)	0.0161 (3)
H1A	0.6152	0.8739	0.2456	0.019*
H1B	0.6347	0.6443	0.2855	0.019*
C2	0.4068 (2)	0.78419 (19)	0.41571 (12)	0.0201 (3)
H2A	0.3550	0.6634	0.4599	0.024*
H2B	0.5001	0.7996	0.4685	0.024*
C3	0.0821 (2)	0.90024 (19)	0.35316 (12)	0.0183 (3)
H3A	-0.0349	1.0155	0.3382	0.022*
H3B	0.0196	0.7956	0.4183	0.022*
C4	0.1736 (2)	0.83638 (18)	0.22515 (12)	0.0164 (3)
C5	0.4968 (2)	0.75696 (16)	0.06139 (12)	0.0132 (3)
C6	0.7205 (2)	0.71941 (17)	0.03016 (12)	0.0160 (3)
H6	0.7988	0.7192	0.0924	0.019*
C7	0.8283 (2)	0.68282 (17)	-0.09000 (12)	0.0161 (3)
H7	0.9795	0.6591	-0.1095	0.019*
C8	0.7182 (2)	0.68025 (17)	-0.18264 (12)	0.0143 (3)
C9	0.4967 (2)	0.72366 (18)	-0.15317 (12)	0.0158 (3)
C10	0.3858 (2)	0.76283 (17)	-0.03458 (12)	0.0160 (3)
H10	0.2345	0.7938	-0.0178	0.019*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0201 (5)	0.0495 (5)	0.0226 (4)	-0.0038 (4)	-0.0079 (4)	-0.0158 (4)
O1	0.0176 (5)	0.0226 (5)	0.0198 (5)	-0.0014 (4)	-0.0046 (4)	-0.0102 (4)
O2	0.0134 (5)	0.0476 (6)	0.0235 (5)	-0.0093 (5)	-0.0009 (4)	-0.0173 (5)
O3	0.0289 (6)	0.0285 (5)	0.0192 (5)	-0.0068 (4)	-0.0067 (4)	-0.0099 (4)
O4	0.0162 (5)	0.0297 (5)	0.0214 (5)	-0.0027 (4)	0.0012 (4)	-0.0078 (4)
N1	0.0125 (5)	0.0173 (5)	0.0125 (5)	-0.0031 (4)	-0.0020 (4)	-0.0049 (4)
N2	0.0192 (6)	0.0143 (5)	0.0148 (5)	-0.0029 (5)	-0.0020 (5)	-0.0028 (4)
C1	0.0135 (6)	0.0200 (7)	0.0159 (6)	-0.0013 (5)	-0.0055 (5)	-0.0056 (5)
C2	0.0196 (7)	0.0234 (7)	0.0158 (6)	0.0000 (6)	-0.0051 (5)	-0.0053 (5)
C3	0.0162 (7)	0.0218 (7)	0.0173 (6)	-0.0031 (5)	-0.0026 (5)	-0.0063 (5)
C4	0.0147 (7)	0.0177 (7)	0.0163 (6)	-0.0045 (5)	-0.0007 (5)	-0.0044 (5)
C5	0.0153 (6)	0.0117 (6)	0.0129 (6)	-0.0041 (5)	-0.0021 (5)	-0.0029 (5)
C6	0.0154 (7)	0.0182 (7)	0.0162 (6)	-0.0045 (5)	-0.0048 (5)	-0.0043 (5)
C7	0.0133 (6)	0.0181 (7)	0.0175 (6)	-0.0041 (5)	-0.0027 (5)	-0.0047 (5)

supplementary materials

C8	0.0161 (7)	0.0134 (6)	0.0132 (6)	-0.0033 (5)	-0.0014 (5)	-0.0036 (5)
C9	0.0166 (7)	0.0180 (7)	0.0153 (6)	-0.0042 (5)	-0.0071 (5)	-0.0036 (5)
C10	0.0111 (6)	0.0188 (7)	0.0183 (6)	-0.0018 (5)	-0.0035 (5)	-0.0051 (5)
Geometric param	neters (Å, °)					
F1—C9		1.3438 (13)	C2	2—Н2В	0.99	000
O1—C3		1.4118 (14)	C3	3—C4	1.52	23 (18)
O1—C2		1.4286 (16)	CE	3—НЗА	0.99	000
O2—C4		1.2193 (14)	C3	3—Н3В	0.99	000
O3—N2		1.2292 (13)	C	5—C10	1.40	050 (16)
O4—N2		1.2349 (13)	CS	5—С6	1.40	061 (18)
N1—C4		1.3823 (16)	Ce	5—C7	1.38	331 (17)
N1—C5		1.4223 (16)	Ce	б—Н6	0.95	500
N1-C1		1.4885 (15)	C7	7—С8	1.39	010 (16)
N2—C8		1.4630 (16)	C7	7—H7	0.95	500
C1—C2		1.5171 (18)	C8	3—С9	1.39	012 (18)
C1—H1A		0.9900	CS	9—C10	1.37	95 (18)
C1—H1B		0.9900	Cl	10—H10	0.95	500
C2—H2A		0.9900				
C3—O1—C2		107.55 (9)	C4	4—С3—Н3В	108	.5
C4—N1—C5		123.48 (11)	H	ЗА—СЗ—НЗВ	107	.5
C4—N1—C1		120.11 (10)	02	2—C4—N1	124	.24 (12)
C5—N1—C1		116.39 (10)	02	2—C4—C3	117	.50 (12)
O3—N2—O4		123.82 (11)	NI	1—C4—C3	118	.25 (11)
O3—N2—C8		118.74 (11)	Cl	10—C5—C6	118	.08 (11)
O4—N2—C8		117.43 (10)	Cl	10—C5—N1	122	.88 (11)
N1—C1—C2		112.26 (10)	Ce	6—C5—N1	119	.03 (11)
N1—C1—H1A		109.2	C7	7—С6—С5	120	.88 (12)
C2—C1—H1A		109.2	C7	7—С6—Н6	119	.6
N1—C1—H1B		109.2	C5	5—С6—Н6	119	.6
C2—C1—H1B		109.2	Ce	б—С7—С8	120	.88 (12)
H1A—C1—H1B		107.9	Ce	б—С7—Н7	119	.6
O1—C2—C1		109.95 (10)	C	3—С7—Н7	119	.6
O1—C2—H2A		109.7	C7	7—С8—С9	118	.10 (12)
C1—C2—H2A		109.7	C7	7—C8—N2	118	.60 (11)
O1—C2—H2B		109.7	CS	9—C8—N2	123	.31 (11)
C1—C2—H2B		109.7	F1		116	.88 (12)
H2A—C2—H2B		108.2	F1	C9C8	121	.12 (12)
O1—C3—C4		114.95 (11)	Cl	0	121	.99 (12)
O1—C3—H3A		108.5	CS	9—С10—С5	119	.97 (12)
С4—С3—Н3А		108.5	CS	9—С10—Н10	120	.0
O1—C3—H3B		108.5	CS	5—С10—Н10	120	.0
C4—N1—C1—C	2	6.24 (15)	N	l—C5—C6—C7	178	.93 (10)
C5—N1—C1—C	2	-172.77 (10)	C5	5—C6—C7—C8	-0.6	66 (19)
С3—О1—С2—С	1	70.39 (13)	Ce	б—С7—С8—С9	2.70	0 (19)
N1—C1—C2—O	1	-46.84 (14)	Ce	6—C7—C8—N2	-17	7.12 (11)
C2—O1—C3—C	4	-52.83 (13)	03	3—N2—C8—C7	168	.82 (11)
C5—N1—C4—O	2	9.8 (2)	O4	4—N2—C8—C7	-10	.19 (16)

supplementary materials

C1—N1—C4—O2	-169.11 (11)	O3—N2—C8—C9	-10.99 (18)
C5—N1—C4—C3	-170.40 (11)	O4—N2—C8—C9	170.00 (11)
C1—N1—C4—C3	10.66 (17)	C7—C8—C9—F1	176.97 (10)
O1—C3—C4—O2	-167.37 (11)	N2	-3.22 (19)
O1—C3—C4—N1	12.84 (16)	C7—C8—C9—C10	-1.95 (19)
C4—N1—C5—C10	-1.57 (18)	N2-C8-C9-C10	177.87 (11)
C1—N1—C5—C10	177.41 (11)	F1—C9—C10—C5	-179.83 (10)
C4—N1—C5—C6	177.30 (11)	C8—C9—C10—C5	-0.87 (19)
C1—N1—C5—C6	-3.73 (16)	C6—C5—C10—C9	2.90 (18)
C10—C5—C6—C7	-2.16 (18)	N1—C5—C10—C9	-178.23 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C6—H6···O2 ⁱ	0.95	2.39	3.2635 (16)	153
C2—H2B···O3 ⁱⁱ	0.99	2.50	3.3244 (19)	140
C1—H1B····O4 ⁱⁱⁱ	0.99	2.57	3.515 (2)	161

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+2, -*y*+1, -*z*.

Fig. 1